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Abstract. A Lie algebraic approach to quadratic parametric processes in quantum optics 
and quantum acoustics is presented. In this approach the Heisenberg-Weyl and symplectic 
dynamical algebras are used to obtain a general exact solution for the time evolution 
operator. The solution is then applied to describe quantum mechanically the parametric 
process of backward-wave echo generation in dielectrics. 

1. Introduction 

The most general bilinear Hamiltonian, describing quadratic parametric processes, is 
given by 

2 

% ( t )  = wi j (  t)a'aj + [ 6,( t)a,aj +. di (  t)ail + HC 
i , j = l  

where w,  6 and d are arbitrary complex valued functions of time and the annihilation 
and creation operators a,, a: satisfy the commutation relations [a , ,  a:] = a,, i, j = 1,2.  
We use a quantum mechanical model for quadratic parametric processes, treating an 
external field classically and neglecting the losses. The Hamiltonian (1) involves the 
following as special cases: 

(i) parametric generation and amplification (Louisell et a1 1961, Mollow and 
Glauber 1967) ( w I 2  = w21 = 0, 611 = 6 2 2  = 0, d,  = 0); 

(ii) frequency conversion (Louisell et a1 1961, Mollow and Glauber 1967) (6, = 0, 
d,  = 0); 

(iii) degenerate parametric amplification (Raiford 1974) ( w12 = w21 = = 0, 

(iv) second harmonic generation in two modes (Bloembergen 1965) (wI2  = w21 = 0, 

(v) generation of squeezed states (Yuen 1976) and a quadrupole oscillator echo 

(vi) parametric backward-wave echo generation (Fedders and Lu 1973, Kopvillem 

(vii) parametric backward-wave echo generation with frequency conversion 

In general, the dynamical behaviour of a quantum system is described by the time 
evolution operator U (  t, t o )  which connects the Schrodinger and Heisenberg pictures 
of the motion. It allows us to find the time detelopment of the dynamical operators 
in the Heisenberg picture along with the certain transition probabilities in the 
Schrodinger picture and the temporal evolution of the density matrix. 

612 = 62, = 6 2 2  = 0 ,  d ,  = 0); 

612  = 6 2 1  = 0, d,  = 0); 

process (Kopvillem and Prants 1985) (wiz = w21 = w22 = 0, 612 = 6 2 1  = 6 2 2  = 0); 

and Prants 1985) (al2 = w Z 1  = 0, 611 = 6 2 2  = 0) and 

( 6 # J  = O ) .  
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In this paper a Lie algebraic approach (0 2) is used to calculate explicitly the time 
evolution operator for quadratic parametric processes with Hamiltonian (1). Construct- 
ing the appropriate dynamical Lie algebra (§  3), we factorise the operator U (  t, to) into 
the product of the exponentials of the generators of the algebra. We derive a general 
exact solution for U (  t ,  to)  (§ 4) that may be used to treat all the quadratic parametric 
processes mentioned above. Special attention will be paid to the quantum theory of 
backward-wave echoes (0 5). 

2. Lie algebraic solution of the Schrodinger equation 

If the Hamiltonian, governing a quantum system X( t )  = Zy=l hj( t )H ,  ( H ,  are constant 
operators), generates a finite-dimensional Lie algebra L,: {Hl, H 2 , .  . . , H , } ,  n 2 m, 
then the time-dependent Schrodinger equation 

ihdU(t ,  t o ) / a t = X ( t ) U ( t ,  to) U (  t ,  to)  = I (2) 

has an exact solution of the form 
n 

j = 1  
u(t, to)  = n exp[g,(t, t 0 ) 6 1  (3) 

where the complex valued functions of time g,(t, t o )  obey the equation (Wei and 
Norman 1963) 

where (eXp Ad f f k ) H ,  (eXp gkHk)Hj eXp(-gkHk). 
The decomposition L = SO R of L into the semi-direct sum of the semi-simple 

subalgebra S and radical R gives rise to the corresponding decomposition 2t = Xs + ER 
of X that gives rise, in turn, to the solution U = Us U, with the factors Us and UR 
obeying the equations 

ih aUs/at  = 2ts( t )  Us ihaU,/at= u~2tR(t)usuR. (5) 
Now, functions gz( f, to) and g f (  t ,  to) satisfy two equations similar to equation (4) but 
much more simple. The derivations of Wei-Norman equations (4) and (5) are given 
in appendix 1. 

For discussions of Lie groups and Lie algebras see, for example, the books of 
Hamermesh (1962) and Gilmore (1974). 

3. Dynamical algebras for quadratic parametric processes 

The dynamical group for quadratic parametric processes is the semi-direct product of 
a four-dimensional symplectic group Sp(4, R )  and the Heisenberg-Weyl group N(2). 
The corresponding dynamical algebra is the semi-direct sum; sp(4, R)On(2)  of the 
semi-simple subalgebra sp(4, R )  and the radical n(2). The Lie algebra sp(4, R )  is 
realised by the set of all bilinear products formed from ak and a:. One can show that 
the ten operators {akal, a:@, ais:} close under the symplectic algebra sp(4, R ) .  The 
five generators of 1-42) can be written as {ak, a:, I } ,  where k, 1 = 1, 2 and I is the 
identity operator. 
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Individual quadratic parametric processes mentioned above have the following 

( i )  u(1, l )={a:al+f ,  a : a 2 + f , a : a : ,  a 1 4  
(ii) u(2) = { a : a l + t ,  a:a2+t,  a:a2, ala:} 
(iii) su(1, 1) = {a:a,+t, a:, uT2} 
(iv) su( 1, l ) O s u (  1, 1) 
(v) s u ( l , l ) @ n ( l )  
(vi) u ( l , l ) O n ( 2 )  
(vii) u(2) 0 1-42). 
Our algebraic approach reduces the solution of a Schrodinger equation (2) with 

any quadratic Hamiltonian (1) to the solution of equation (2) with the Hamiltonian 
of the process (vi) which generates the algebra u(1, 1 ) 0 n ( 2 ) .  The reason is that the 
dynamical algebras for processes (i), (iii), (iv) and (v) are the subalgebras of u ( 1 , l ) O  
n(2) and the algebra u(2) for the processes (ii) and (vii) is connected with u(1 , l )  by 
the Weyl unitary trick. In other words, one-to-one mapping a,-al,, a:-(ai)+,  
a2t)  -i(ui)+, a:- -ia; provides an isomorphism (equivalence) between algebras 
u ( 1 , l )  and u(2) (primed operators belong to u(2)). In fact, we deal with the same 
commutation relations. Carrying out the direct transformations a;  + a, ,  . . . in equations 
(2)-(4), we obtain the corresponding equations for U (  1, 1). The time evolution operator 
for u(2) may be found from the u(1 , l )  solutions (7) and (9) with the help of the 
inverse transformations a, + a i ,  . . . . The explicit calculation is given in appendix 2. 

dynamical algebrast: 

4. Time evolution operator for u(l,l)@n(2) 

Now we calculate the time evolution operator for the backward-wave echo process 
(vi) whose Hamiltonian 

X= hwl(a:al +f) + hw2(a:a2+t)  + d,(t)Z 

+{-  h y  exp[i(w,+w2)t]a,a,+ d , ( t ) a , +  d 2 ( t ) a 2 } + ~ c  ( 6 )  

generates the dynamical algebra u ( l , l ) O n ( 2 ) .  Using equations (3 )  and ( 5 ) ,  we are 
able to factorise the time evolution operator into the product of exponential operators 

(7)  

(8) 

U = uu(l,l) un(2), where 

U"(l,l) = exP[gl(a:a, +;)I exP[g2(a:a2+f)l exp[g,a,a21 exPk4a:a:l 

= expf la l  expf2a: expf3a2 expf4a: expf51. 

The time-dependent functions g obey equation (4) which, in the case u(1, l ) ,  is 
equivalent to a set of four differential equations with the following solutions: 

g, = -iw, t + In cosh yt g2 = -iw,t + In cosh yt 

g, = i tanh yt. g, = f i  sinh 2 yt ( 9 )  

The functions f are found from equation (4) which can easily be solved by quadrature 

t It is possible to realise all the dynamical algebras by other combinations of boson operators, for example, 
su(1,l) = { - a ( a 2 + a + 2 ) ,  -$i(az-a+2),  : (no++ a+a)}.  
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for the solvable algebra n(2): 

f l  = i h 1 ( d ,  egl - g3 d f d t f3 = i h 1 ( d2 eg2 - g, d T e -gi ) d t 
10 10 

f l  = i h 1 ( d ,  egl - g3 d f d t f3 = i h 1 ( d2 eg2 - g, d T e -gi ) d t 
10 10 

5. Backward-wave echoes 

Here we would like to apply the algebraic approach, developed in the preceding 
sections, to a quantum mechanical description of a parametric backward-wave echo 
generation in piezoelectrics. The phenomenon has been observed in a number of 
different materials (Frenois er a1 1973, Fossheim and Holt 1982, Smolyakov and 
Schtirkov 1976). In a typical experiment, the first ultrasonic pulse of frequency w and 
wavevector k is excited piezoelectrically at the left end of a sample. At t = 7, a second 
electric field pulse of frequency 2w, a peak amplitude Eo, width A t  and wavevector k, 
is applied. Parametric coupling between the forward travelling acoustic wave generated 
by the first pulse and the microwave electric field of the second pulse results in the 
generation of a backward travelling acoustic wave of frequency w and wavevector- k 
and in the possible amplification of the forward travelling wave. The backward 
travelling wave is detected as an echo signal at the left end of the sample at t = 2r. In 
quantum mechanical terms, the backward-wave echo is generated as a consequence 
of the annihilation of a photon of frequency 2 0  and wavevector k,, which is small 
compared to k in the region of ultrasonic frequencies, and the creation of two phonons 
(w ,  k )  and (w ,  - k )  (Bajak 1977). While the phonons ( w ,  - k )  create a backward 
travelling wave the phonons (w ,  k )  contribute to the forward travelling wave which 
appears as an amplification. 

Following Kopvillem and Prants (1982) all echo phenomena can be separated into 
one of two classes according to the microscopic physical nature of the particles or 
objects that possess phase memory and generate the echo signal. In backward-wave 
multipole echo processes the objects are fixed electroacoustical multipoles connected 
with the structural defects or impurities in crystals. In backward-wave phonon echo 
processes the objects are phonons. While the n-pulse echo experiments ( n  2 2 )  can 
be described as an echo of multipoles, only the two-pulse experiments can be described 
as an echo of phonons. Both types of echoes can be generated in piezoelectrics under 
the experimental conditions mentioned above. 

Backward-wave dipole echo is generated by the structural electroacoustical dipoles 
which can radiate both the forward travelling phonons ( a l ,  a:) and the backward 
travelling phonons (a2,  a i ) .  The Hamiltonian (6) of the process (with d2( t )  = 0) 
generates the dynamical algebra u ( l , l ) @ n ( 2 )  with the term d l a l + d T a :  describing 
the dipole-phonon interaction of the first pulse and the term h y exp[i( w1 + w 2 )  t ]a ,a2 + 
HC describing the non-linear electroacoustical interaction of the second pulse. The 
time evolution operator Uu(l , l )  for such a process was calculated in § 4, and 
the intensity of the echo signal could be calculated in the usual way (Kopvillem and 
Prants 1982, 1985). Up to now, there are no reliable experimental facts on the 
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backward-wave dipole echoes. That is why we prefer to calculate explicitly the intensity 
of the backward-wave phonon echoes in piezoelectrics, which have been detected in a 
number of experiments, as an example of the application of the algebraic approach. 

If the pump electric field of the second pulse is treated classically, the total 
Hamiltonian of the quadratic parametric process, which was discussed at the beginning 
of this section, 

Xu,,,,, = hw(a:a ,  +f) + h w ( a : a 2 + f )  - { h w y E ,  exp[-i(k- k +  k , ) r ] a , a 2 } + ~ c  (11) 

generates the dynamical algebra u(1, l ) .  Here a:(a,) and a:(a,) are the phonon 
creation (annihilation) operators for the forward and backward travelling phonons, 
respectively. The coupling constant has the form y = (2&puku-k)-'dc/dE, where dc/dE 
is the non-linear piezoelectric coefficient which is obtained from Taylor's expansion 
of the potential energy of the crystal (Bajak 1977), p is the density of the material, uk 
and V - k  are corresponding sound velocities and c is the elastic constant of the crystal. 

With U,,(,,,) given by (7) and (9), the number of backward travelling phonons is 

(12) 
where iial is the average number of phonons a, in the forward travelling mode at t = 0 
and the initial density matrix is given by 

(ara2) = Tr G ~ i , i ) a ~ ( O ) a 2 ( 0 )  Uu(l,l)pa,(O) = ( f fa l  + 1) sinh2(yEowAt) 

pa,(())  = eXp[ - hw( U:Ul + i ) / k ~  T]{Tr eXp[ - ( a : U ,  + f)/ kB TI}-'. 
In a recent w-2w experiment (Meredith et al 1984) on LiNbO, the observed 

variation of the backward-wave echo amplitude agrees well with sinh 0, where 0 is 
proportional to the amplitude of the pump electric field, Eo. The initial ultrasonic 
pulse was excited piezoelectrically at the left end of a sample at a frequency of 17.3 GHz. 
The right end was placed in a microwave electric field region of a rectangular cavity, 
resonating at 34.6 GHz. 

6. Concluding remarks 

The algebraic approach to quadratic parametric processes presented in this paper is 
based on a dynamical algebra sp(4, R ) O n ( 2 ) .  The most general bilinear Hamiltonian 
for such processes can be expressed in terms of the generators of the algebra. It allows 
us to derive an exact solution for the time evolution operator which contains more 
complete information on the dynamical behaviour of a quantum system than the 
Heisenberg equations usually used to describe the parametric processes. Such a solution 
is applied to describe the parametric generation of backward-wave echo in piezoelec- 
trics. The algebraic method allows for the calculation of the corresponding intensity 
in non-perturbative fashion. The recent experimental data agree well with our theoreti- 
cal result. Our approach is general enough in that the various quadratic processes can 
be described, grouped and classified by their dynamical algebras. 

Appendix 1. Derivations of equations (4) and (5) 

Let U be of the form (3). Then we may write 
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Substituting the derivative in equation (2) and right-multiplying the result by the 
operator U-' ,  one can obtain 

Let us define the operator Ad Hk and its powers in the usual way: 

where &, H, are the elements of the algebra L. Then eHkH, eFHk = (eAdHk)H, E L, and 
we may rewrite the preceding equation in the form of equation (4). 

If L = SO R, then X = 2, + RR, where Xs E S and X R  E R. One can directly verify 
that the solution U = U,. U,  satisfies the equation ifi a Ulat  = ( Xs + Z R )  U if U ,  and 
UR obey the equations 

Since R is a radical in L, i.e. [ R, L ]  E R, we have U f X R U s  E R. 

(Ad Hk)HJ CHkr Hj1 (Ad Hk)'HJ [ H k ,  LHk, Hjll. . . 

ifiaU,/at = X,U, i fi a URlat = ( US) * 

Appendix 2. Calculation of the time evolution operator for u(2) 

The u(2) Hamiltonian for the frequency conversion process 
Xu(2) = fiw ;( a ;+a ; + f )  + fiw;( a;+a2 + f )  + fiy'{exp[i( w ;  - w i )  t ] a  a;+} + HC 

can be transformed to the u(1 , l )  form 

by means of the Weyl unitary trick a;+ a,, .a;++ a:, ai-. -iul ,  a;+-, -iu2, where 
o1 = U ; ,  w2 = -U; ,  y = iy'. Then the time evolution operator for u(2) can be obtained 
from the solutions (7)  and (9) with the help of the inverse transformation 

= fiw,(q:a,+t)+ h w , ( a ~ a z + ~ ) -  fiy{exp[i(w,+w2)]a,a2}+ HC 

= exp[ g;( a ;+al + f ) ]  exp[ -gi( ai's; + 5 ) ]  exp(ig;a', a;+) exp(ig;ai+a;) 
g; = -iw; t + In cos y ' t  gi  = iw;t + In cos y ' t  

g j = - f s i n 2 y ' t  g;= -tgy't. 

where we have used the well known identities cosh i y ' t  5 cos y ' t  and sinh i y ' t  = 
i sin y't. 
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